



EUROPEAN UNION European Regional Development Fund

Protecting Baltic Sea from untreated wastewater billages dung flood events in urban areas

Janis Rubulis







chnical University

NOAH

Facebook: Ūdens Petniecībes Laboratori janis.rubulis@rtu.lv +37129438018



#### **Partners**

Academies (EST, FIN, POL, SWE, LV, DEN)

- PP 1 Tallinn University of Technology
- PP 2 Satakunta University of Applied Sciences
- PP 3 Gdansk University of Technology
- PP 7 Natural Resources Institute Finland (Luke)
- PP 10 Halmstad University
- PP 12 Riga Technical University
- PP 15 Technical University of Denmark

Municipalities/water companies (EST, FIN, POL, SWE, LV)

- PP 4 City of Haapsalu
- PP 5 City of Rakvere
- PP 6 Liepaja municipal authority "Komunālā pārvalde"
- PP 9 City of Pori
- PP 13 Ogre municipality
- PP 14 Slupsk Water Supply
- PP 16 Jurmalas udens Ltd
- PP 17 The municipality of Söderhamn
- PP 18 Rakvere Water Company

Umbrella organisations (EST, POL)

PP 8 - Estonian Waterworks Association

PP 11 - Economic Chamber Polish Waterworks

Projekta realizācija: 01.01.2019.-30.09.2021.

Associated organisations (EST, FIN)

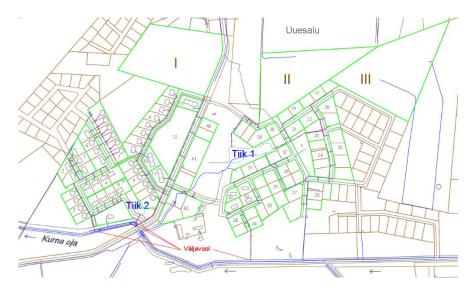
- AO 1 Union of the Baltic cities
- AO 2 Ministry of Environment
- AO 3 Satakunta Chamber of Commerce

#### **MOTIVATION**



1995










TAL TECH

#### **WP2 SHORTCOMES IN PLOT BASED PLANNING**











TAL TECH

### LV scientific core team



Arnis Lektauers

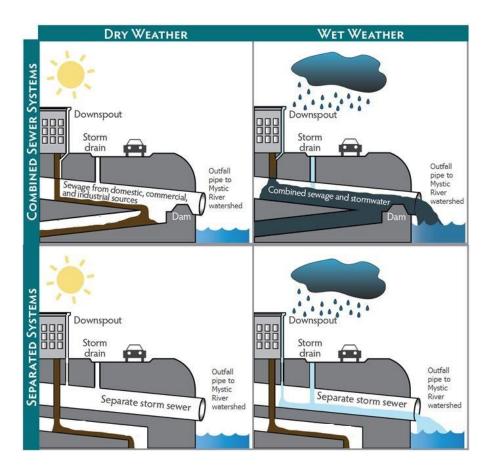


Jānis Zvirgzds



Māris Kaļinka




- 1. Water research laboratory
- 2. Department of Geomatics/Spatial and Regional Development Research laboratory
- 3. Department of Modelling and Simulation

Andrejs Zubaničs – Latvian Environment, Geology and Meteorology Centre Forecasts and Climate Department, Hydrometeorological Forecasts Division



Jānis Rubulis

## State of play for LV end-users



#### Liepāja had partly combined system. In future would like separate system.

Ogre and Jūrmala. However for Jūrmala storm sewer (ditches) is influenced by decentralized (private) sewerage.

# Liepaja

|                                                                         | Challenge                                                                                                                                                                                                                             | Task                                                                   | Objective                                                                                                     | Tool, approach used                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.                                                                      | How stormwater<br>system (Tebras<br>area) works?<br>How often outlet is<br>flooded due to<br>water level rise in<br>Lake Liepāja from<br>November till<br>January ( <b>Western</b><br><b>wind</b> )?<br>More connections<br>possible? | Precipitation,<br>level<br>measuremen<br>ts<br>and flow<br>calculation | Define interaction<br>between<br>precipitation,<br>water level in Lake<br>and storm water<br>system operation | Modelling of flows (dry and wet<br>weather cases) with Bentley<br>StormCAD and EPA SWMM.<br>Installation of online sensors<br>(level) in storm water system<br>manhole. Water level, wind speed<br>(!!!) and precipiatation data from<br>LGEMC.<br>Extreme Weather Layer (EWL) –<br>graphical presentation of the<br>results. |  |  |  |
| 2.                                                                      | High grounwater<br>table                                                                                                                                                                                                              | To measure<br>it                                                       | How it influence<br>stormwater<br>fillage                                                                     | Real time Control (RTC) ???                                                                                                                                                                                                                                                                                                   |  |  |  |
| 3.                                                                      | 40 % / 60 %<br>(separate/combin<br>ate)                                                                                                                                                                                               | Inventory of all system                                                | Recomendations<br>for 100%<br>separate system                                                                 | GIS based tool developed by RTU                                                                                                                                                                                                                                                                                               |  |  |  |
| NOAH "Interreg<br>Baltic Sea Region European Regional<br>EUROPEAN UNION |                                                                                                                                                                                                                                       |                                                                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                               |  |  |  |



| The flooding beginns              | The water level - LAS-<br>2000,5 (European<br>Vertical Reference<br>System) |
|-----------------------------------|-----------------------------------------------------------------------------|
| The floodplain of Lake<br>Liepāja | 0,67 m                                                                      |
| City of Liepāja                   | 1,17 m                                                                      |

https://www.meteo.lv

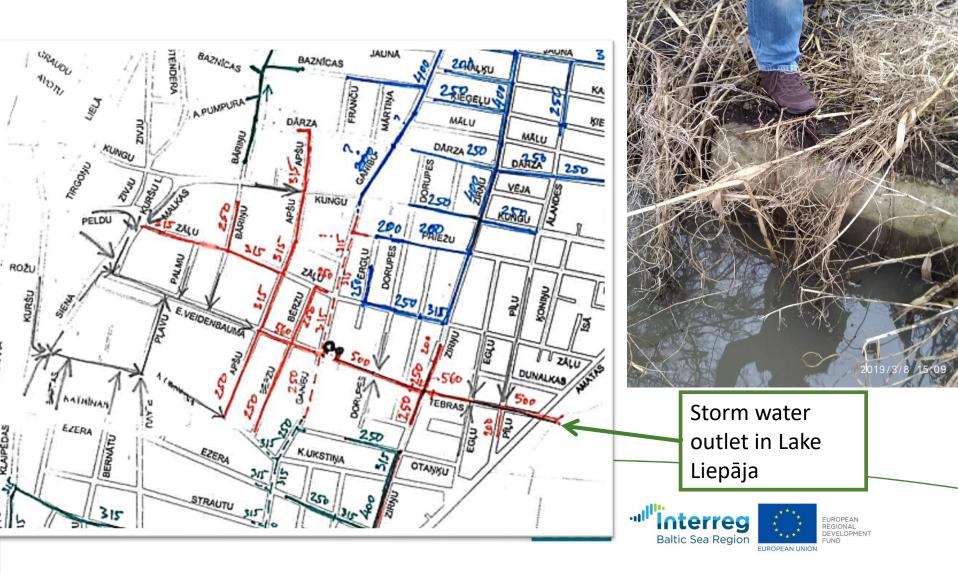
#### PILOT SITES

#### Rainwater drainage in the lake, Tebras Street



#### Basic Data:

- Area = ~51,00 ha;
- Planned Pilot site located near the lake in Eastern part of city;
- Main problem is that storm waters from the Baltic sea come in by trade channel, outlet located in lake does not function.


#### From kick-off in Tallin

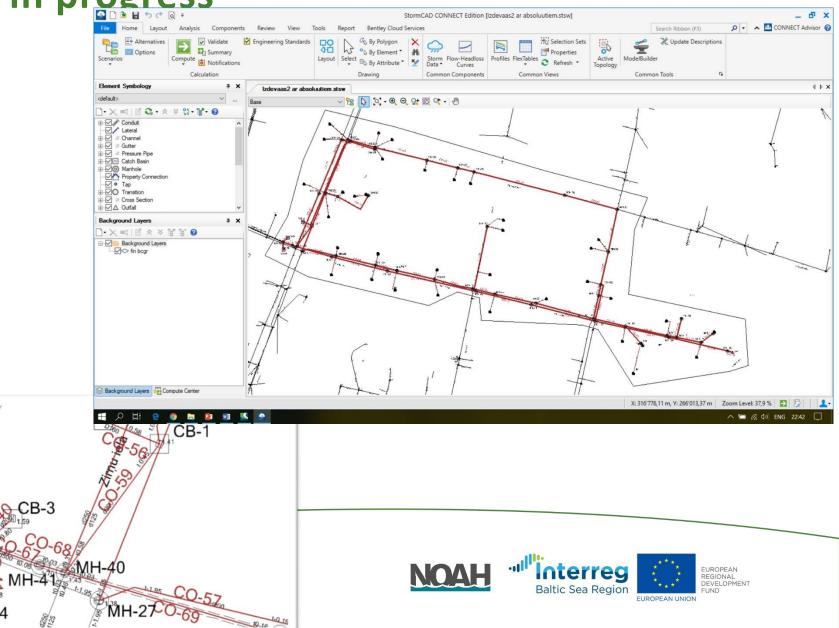




EUROPEAN REGIONAL DEVELOPMENT FUND

### Pilot site at Tebra street catchment area modelling




### 2D model development in StormCAD by RTU – work in progress



RTU sc.assist. Valts Urbanovičs

8 1.1.37

MH-4



### Pilot sites for AHS location in Liepāja, removed

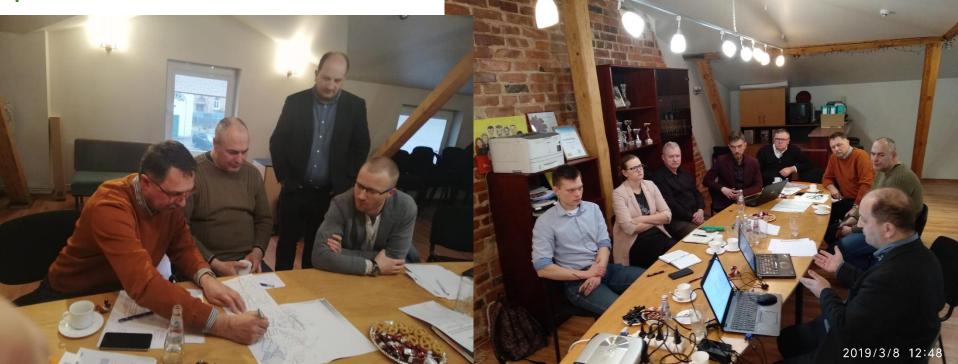






Slaidi sagatavoti sadarbībā ar Liepaja municipal authority

«Komunālā pārvalde»








EUROPEAN UNION

EUROPEAN REGIONAL DEVELOPMENT FUND



### Jūrmala

|    | Challenge                                                                                                                                                                                                     | Task                                                                 | Objective                                                                                                                                    | Tool, approach used                                                                                                                                                                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Separate systems.<br>Hovewer in past were<br>cases when the inflow<br>to Sloka NAI was 2x<br>higher during the rain.<br>Suggestions to<br>transfer stormwater<br>effluents from the<br>beach to river Lielupe | Precipitation,<br>level and flow<br>measurements                     | Define correlation<br>between<br>precipitation, storm<br>water levels and flow<br>in the waste water<br>sewerage → Define<br>critical spots. | Modelling of flows (dry and wet<br>weather cases) with Bentley<br>SewerGEMS/StormCAD vai EPA<br>SWMM.<br>Installation of online sensors (level,<br>flow) in storm water system<br>manholes.<br>Extreme Weather Layer (EWL) –<br>graphical presentation of the results. |
| 2. | Inhabitants do not<br>connect to city<br>sewerage system.<br>Spillages during the<br>street flood                                                                                                             | Contamination<br>detection at<br>storm water<br>drainage<br>outlets. | Detection and<br>prevention of<br>potential illegal<br>activity (to<br>understand source<br>of pollution)                                    | Water qulity analyses in storm sewer<br>(grab samples, online<br>measurements). Installation of<br>automatic sampler near by dithces<br>and online sensors in storm water<br>system manholes?! Pollution<br>transport in soil using EIS method!!                       |

## **1. Pilot site mapping**

1.1. Precipitation, storm water level, waste water sewerage flow measurements

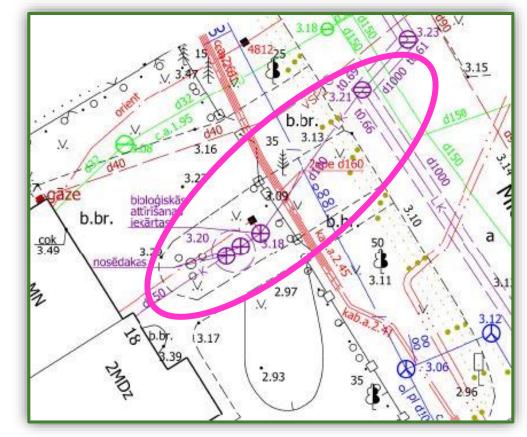
1.2. Possible contamination detection

1.3. Model development



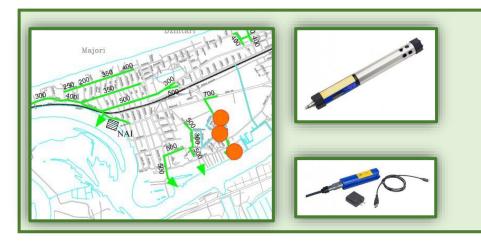


## 2. Topographical overview


#### **2.1.** Defining manholes for sensor/meter installation

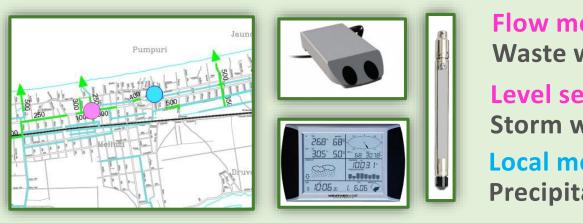





## 2. Topographical overview

- **2.2.** Defining sampling spots
- A. Suspecious outlets in the ditches
- B. Household waste water sewage biological treatment outlets
- C. Outlets from other local sewage collecting solutions (settle tanks, etc.)






### **3. Equipment overview**



#### **Multiparameter probe**

t°; pH; electrical conductivity; ammonium, nitartes; total dissolved solids; dissolved oxygen



Flow meter Waste water flow Level sensor Storm water level Local meteostation Precipitation



### 4. Sampling strategy – water quality

1.

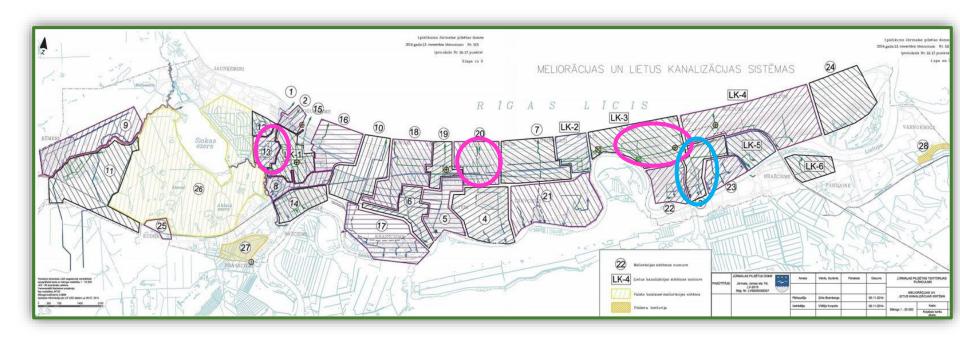
2.

3.

4.

5.

#### Stationary and In-sity (online) Grab samples by Jurmala water 1. P-tot Electrical conductivity (incl. temperature) 2. Biological oxygen demand (BOD5) Nitrate 3. pH Turbidity — Total suspended solids (TSS) 4. NH4-N, NO3-N and N-tot Nitrate $(NO_3^{-} - N)$ Grab samples by RTU **Dissolved** oxygen TOC & DOC 1. 2. Coliformic bacteria Water Level ----- Flowrate Portable Sampler (1L x 124sampling bottles) 3. 16 heavy metals for grab samples 4. Phosphate phosphorous Oil Index 5. 6. PAH

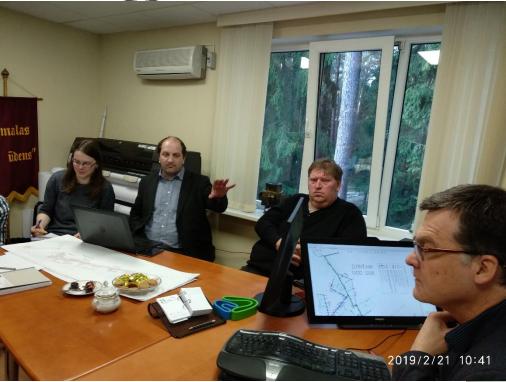



### 6. Model development



RTU sc.assist. Gints Dakša

# 6.1. 2D model development by Riga Technical University – work in progress














#### Slaidi sagatavoti sadarbībā ar JURMALAS UDENS LTD

CER





EUROPEAN UNION

EUROPEAN REGIONAL DEVELOPMENT FUND







|    | Challenge                                                                                                        | Task                                                                             | Objective                                                                                                                                                                                 | Tool, approach used                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1. | Improve Early<br>Warning<br>System for<br>responsible<br>services<br>during the<br>floods in the<br>city of Ogre | River scanning<br>Installation of<br>online sensors<br>(level) in Ogre<br>River. | Increased<br>responsiveness of<br>responsible services to<br>ensure the requirements<br>of Section 3 of the Civil<br>Protection and Disaster<br>Management Act<br>→ Define critical spots | 3 D model of Ogre River<br>Precipitation, water level<br>measurements<br>Modelling of flows (dry and wet<br>weather cases) |
|    |                                                                                                                  | Satellite data<br>analysis,<br>precipitation,<br>water level<br>measurements     | Preventive pocedures for ice jam cases                                                                                                                                                    |                                                                                                                            |







EUROPEAN UNION European Regional Development Fund

**Protecting Baltic Sea** from untreated wastewater spillages duing flood events in urban a eas

nis Rubulis







chnical University .lv/er

NOAH

Facebook: Udens Petniec janis.rubulis@rtu.lv +37129438018

