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   1. What are the stability thresholds for sandy coasts?  
      

      - signatures of erosion – timing and hindcasting 

  - quantitative analysis of wave climate and storm-surge parameters 

      - response to accelerated sea-level rise and increased storminess 

 

              2. How do old channels affect coastal behavior? 
        

      - subsurface anomalies within coastal sequences  

      - vulnerability of barrier segments to breaching 

          - tidal prism reconstruction and sea-level change  

         

               3. Dune reactivation phases: causes and timing 
         

       - climatic vs. internal triggering mechanisms 

           - paleo-wind reconstruction (102-103 yr)  

           - human-landscape interaction 

           
 

    NEW FRONTIERS  

    Recognition and Dating of Erosion in Sand-Dominated Systems  
    

 

 

Questions and Challenges 
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Research Sites 
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Part 1 
 

Erosion: Signatures and Chronology 



Progradation: Deposition - Erosion 

photo by P. Brown (Rocky Mountain Tree-Ring Research) 

tree rings 

From Ebernards et al (2006) 



Ground-Penetrating Radar (GPR) 
 

Revolutionized coastal geological research: Continuous high-resolution imaging 

- physical structures 

- textural contrast 

- composition  

   (+ iron oxides,  

     clays, organics) 

- moisture content 

- bulk density 

- porosity 
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Layer 2 

200 MHz antenna 

control unit 

electromagnetic waves 

Causes of reflection: 

Signal loss:  
- saltwater, thick clay, metal 
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Erosion: Events and Signatures 
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Part 2 
 

Paleo-Channels: Geological Legacy 



Transgressive Coastlines 

Long Island, NY (photo by Covello & Terchunian) 

Landward transfer of sand during storms: 

integral to barrier migration  

with sea-level rise  

(modified after John Norton) 

flood-tidal delta 

washovers 

breach 

LANDWARD SAND TRANSFER 

GEOHAZRD 



Superstorm Sandy 

(2012) 



2003
1977
1938
1886
1846

GPR only

2003
1977
1938
1886
1846

GPR only

Erosion is NOT uniform 

N 

 

1 km 

Average shoreline retreat (m/yr) over 150 years (MCZM data) 

0.5 

1.0 

0 

Channel fill:  

>60%  

 

longshore transport 

Inlet History  

 

Falmouth, MA 

Cape Cod, Massachusetts 



-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 20 40 60 80 100 120 140 160

Channel Dimensions 

Minimum bank-full width (m) 

mean tidal  

range 

N=21 

dredged  

annually 

GPR only 

historic 

present (stabilized) 

w 

d 

Falmouth south shore 



-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 20 40 60 80 100 120 140 160

Channel Dimensions 

Minimum bank-full width (m) 

mean tidal  

range 

N=21 

dredged  

annually 

GPR only 

historic 

present (stabilized) 

w 

d 

Falmouth south shore 

Vineyard Sound 

stabilized 

channel 

sand plug 



Paleo-channel Research 
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Providence, RI – 23 September 1815 

The Great September Gale of 1815  

Reconstructed damage – Fujita Scale 
(courtesy E. Boose – Harvard Forest) 
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Part 3 
 

Dunes as Archives of Climate Change 
and Human-Landscape Interaction 



Coastal Dune Research  

 

- Activity through Holocene 

- Global distribution 

- Sensitivity to environmental changes 
 

Record of: 

- wind patterns (GCM groundtruth) 

- wind velocity 

- sea-level change 

- sediment supply 

- precipitation/water table elevation 

- vegetation dynamics 

- recent human activities 
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Basin-Scale Links Baltic Sea 

Cape Cod, Massachusetts 

- NAO-sensitive regions 

- similar SL history, climate, vegetation 

- different history of human activities 

 

 
Ongoing research: 
 
- Landscape change (6,000 – present) 
 

- N. Atlantic climate: 102-103-yr shifts 
  
- Synchroneity of aeolian phases? 
 

- Storminess – trigger of dune activity? 
 
- Natural vs. human-induced changes 

Aquinnah Dunefield 

Curonian Spit, 

Lithuania 
Visbeck et al (2001)  

Martha’s Vineyard 

USA 



GoogleEarth Image 

Lithuania 

Baltic  

Sea 

10 km 

wind 

Highest coastal dunes in Northern Europe 

Russia 

Curonian  

Spit 

STUDY 

AREA 

N 

massive 

(107-109 m3) 

landward 

sand 

transfer 

oversteepening  

and collapse 

dune migration 

lagoon 

lagoon 

Baltic Sea 



14 settlements buried by migrating dunes 

Sand Invasion (14-19th centuries) 

Advancing dunes(16-18th century) 

Buried settlements (    relocation)

Modern towns
GPR transect

(segment shown below)

North

Curonian Lagoon

Baltic Sea

Old Karvaičių II 

(1740-1797)

Neolithic site 

(~4.5 ka BP)

1 km

Buried settlements (    relocation)

Modern towns
GPR transect

(segment shown below)

North

Curonian Lagoon

Baltic Sea

Old Karvaičių II 

(1740-1797)

Neolithic site 

(~4.5 ka BP)

1 km

Neringa 



Outcrop/core studies – limited information 
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table 



Paleosols – Chronology & Landscape Stability 
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Activity-Stability Phases 

Phase 1: ~5,700 cal BP 

Phases 2-4:  3,400-700 cal BP 

Phase 5:  post-700 cal BP 

  (Little Ice Age) 
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Reactivation of aeolian activity: Triggers  

charcoal  

 Storms, disease, deforestation 

 Fires (natural and man-made) 

P1 

P1 



Buried Landscapes and Structures 
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Summary 
    Extreme Events – key mechanism of landward sand transfer 
 

Integrated approach: 
 

 - onshore-offshore geophysics   

 - groundtruth: deep cores (5-10 m in sand) 

 - multi-dating techniques 
 

New opportunities to reconstruct and quantify: 
 

 - Beach/shoreface gradients (texture/depth/wave energy) 

 - Extent and chronology of erosion (storm impact) 

 - Quantitative storm hindcasting based on geological indicators 

 - Shoreline retreat rates (vulnerability to SL rise) 

 - Channel distribution (onshore-offshore links, stability)  

 - Channel dimensions (tidal prism, longshore transport) 

 - Dune stratigraphy (regional climate, sediment supply, sand invasion) 
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