International Conference "Climate Change Mitigation in Organic Soils in Agricultural and Forest lands" University of Latvia Academic Center in Riga 13th June 2024

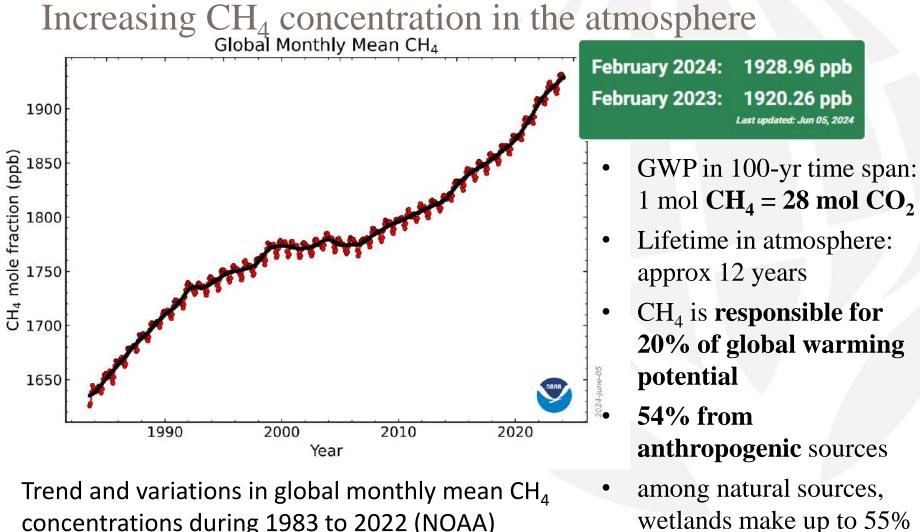
Soil CH₄ and N₂O balance from forest and agriculture lands

<u>Kaido Soosaar, Kamil Sardar Ali, Hanna Vahter, Thomas Schindler,</u> Tartu University; Silava, LAMMC, LUKE, Succow Foundation

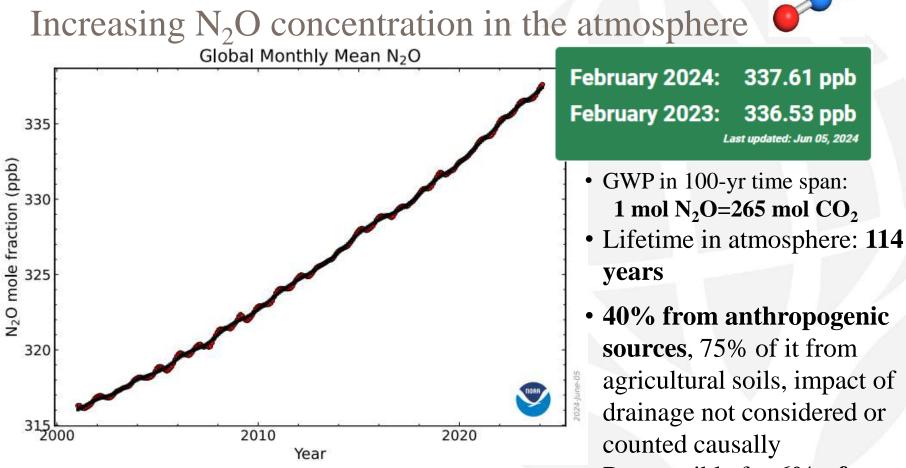
LIFE OrgBalt, LIFE18 CCM/LV/001158

EU LIFE Programme project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

Latvia University of Life Sciences and Technologies



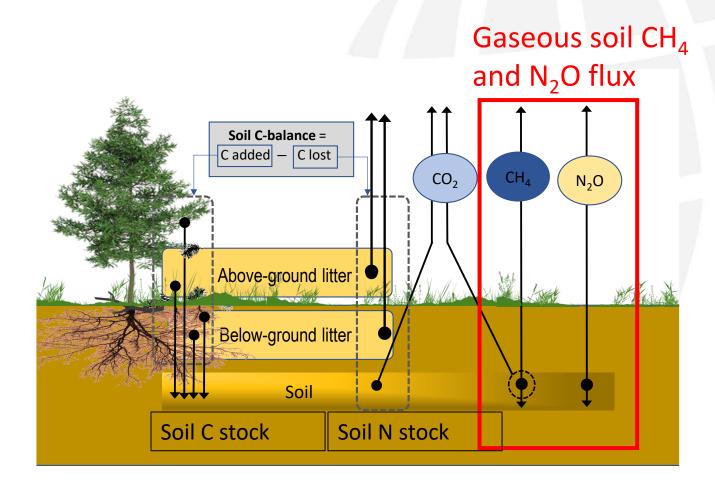
GREIFSWALD MIRE CENTRE



concentrations during 1983 to 2022 (NOAA)

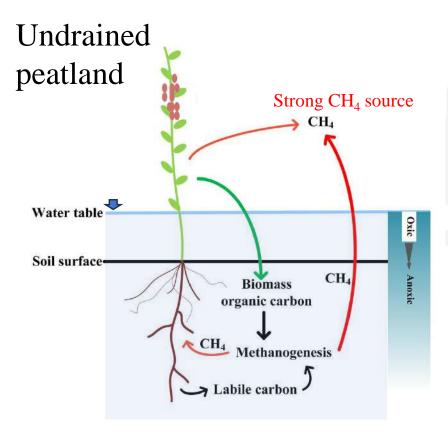
Ed Dlugokencky, NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/)

of emissions

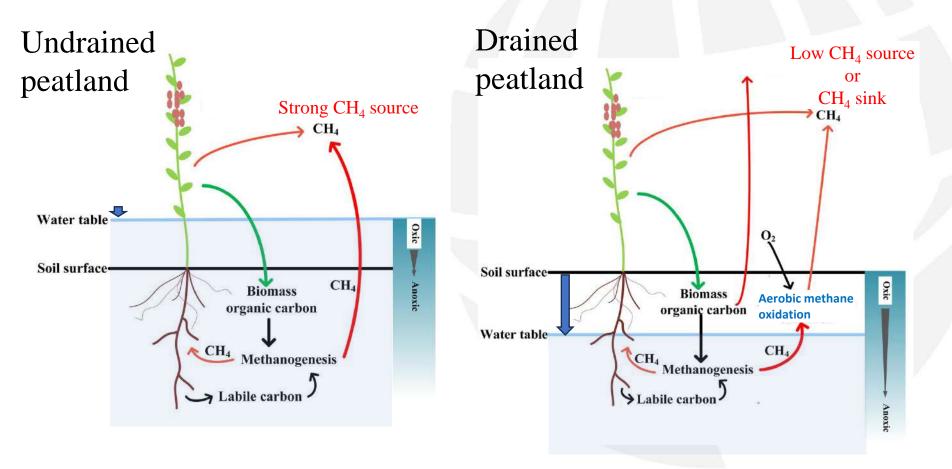


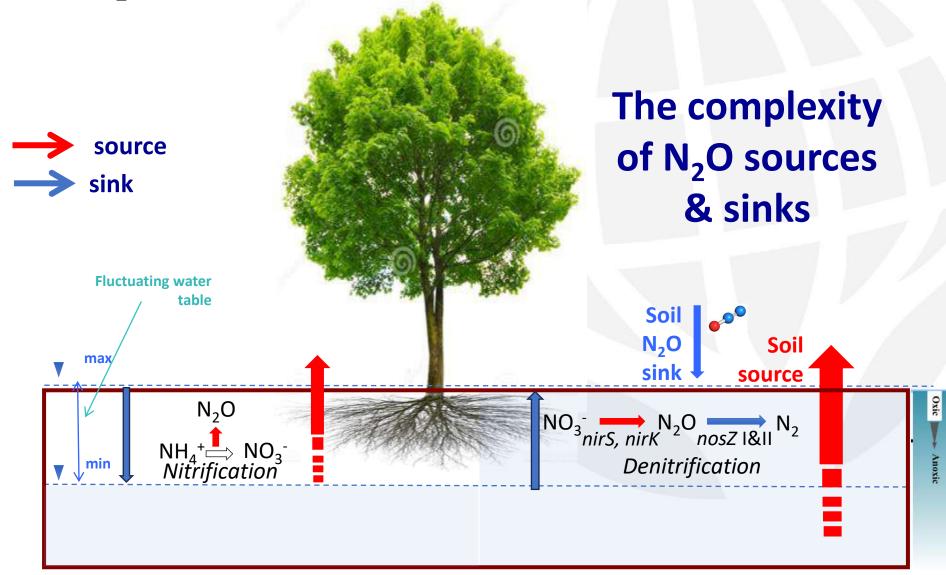
Responsible for 6% of global warming potential

Trend and variations in global monthly mean N_2O concentrations during 1983 to 2022 (NOAA)



Soil C/N and GHG balance monitoring methods


Soil CH_4 balance = methanogenesis vs methanotrophy



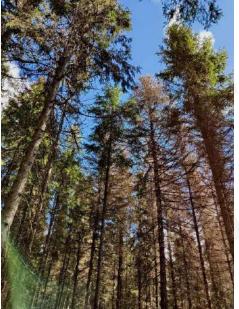
Soil CH_4 balance = methanogenesis vs methanotrophy

Soil N_2O production = <u>nitrification and denitrification</u>

Objectives

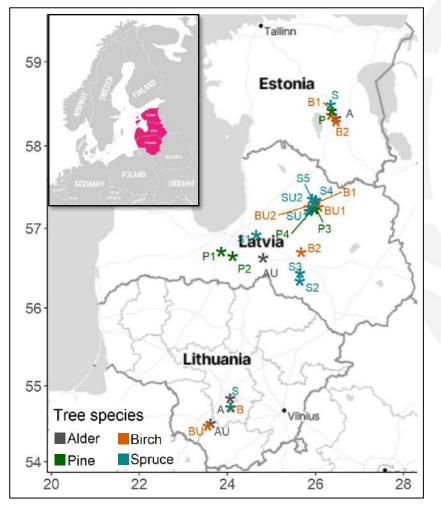
- (1) to provide annual estimates of soil CH₄ and N₂O effluxes
- (2) to quantify factors influencing dynamics of these effluxes

(3) to **determine country/region-specific emission factors** for drained and undrained peatland forests and agricultural lands in the temperate/hemiboreal region.

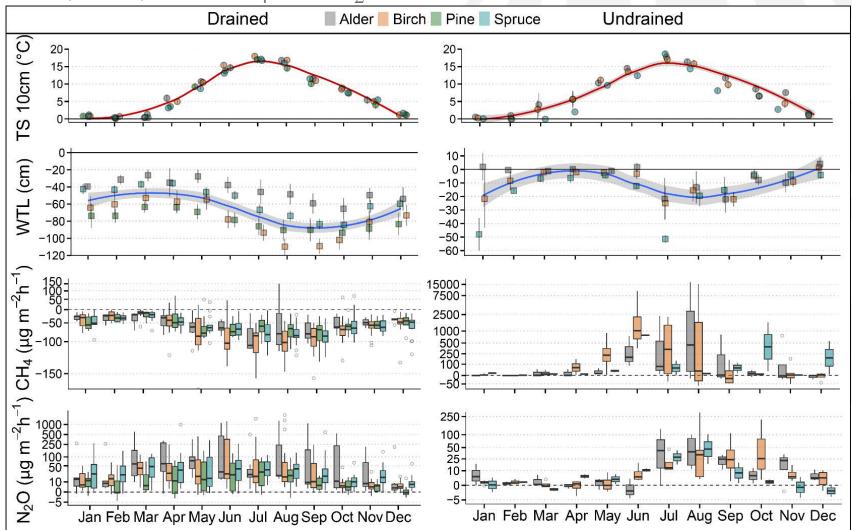

EU LIFE Programme project "Demonstration of climate change of nutrients rich organic soils in B

Study Areas

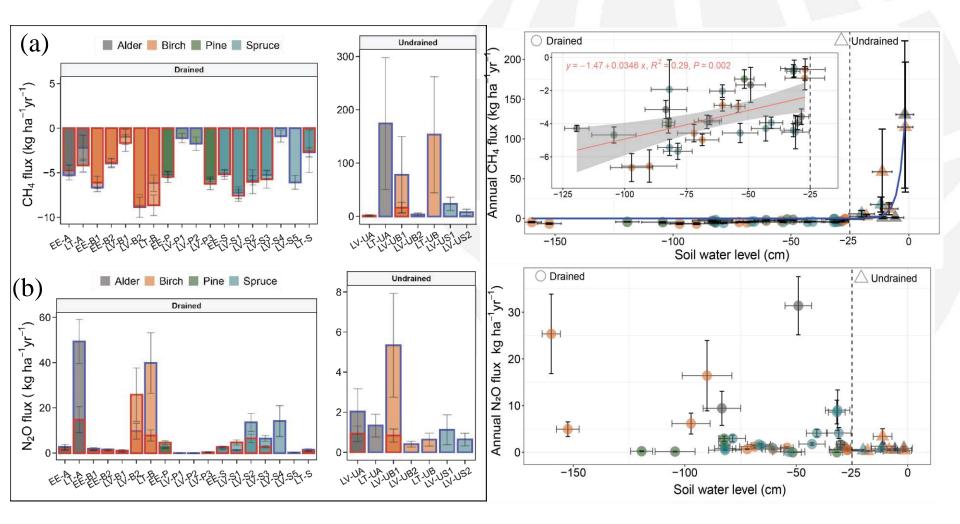
- ✓ Fieldworks in Estonia, Latvia and Lithuania + similar studies in Latvia were included.
- ✓ Drained nutrient-rich organic soil
- Forests with different main tree species: (Downy Birch, Norway Spruce, Scots Pine, Black Alder)
- \checkmark Drained grasslands and croplands


Methods

- GHG flux measurements: monthly and twice per month, 2021 2023.
- Manual static closed dark chamber method for CH₄, N₂O, analysis by GC.
- Auxiliary parameters: Tair, soil; temperature, moisture, water level depth.
- Soil-water chemical analysis
- Soil nutrient contents (0-100 cm)

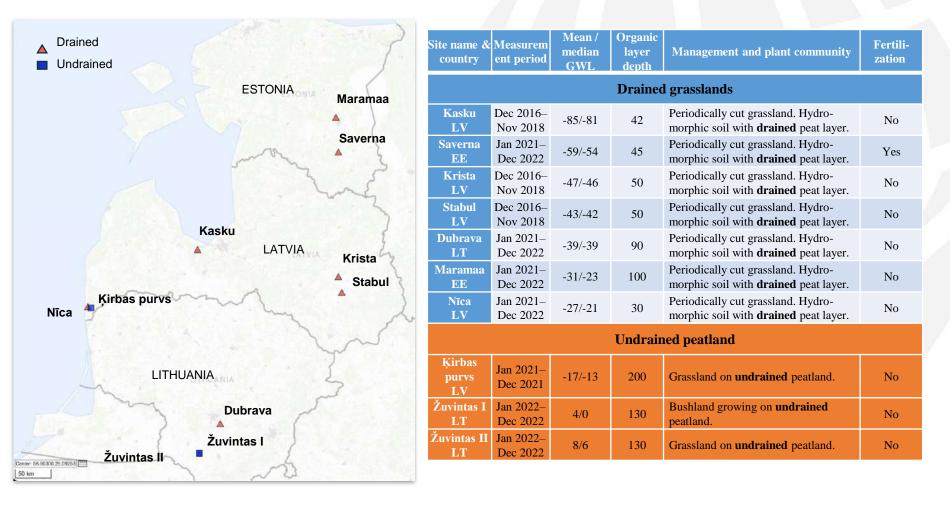

Description of the study sites – forests

	Wate	er regime					Peat	Stand
1	Dr	and ainage Status	Local name	Site code	Tree Stands	WTL Mean/me dian (cm)	dept h (cm)	age (years)
		Deep	Laeva	EE_DP	Pine	-82/-87	93	60
		Deep	Smiltene	LV_DP2	Pine	-52/-47	138	141
		Deep	Dubrava	LT_DS	Spruce	-71/-66	120	70
		Deep	Laeva	EE_DB1	Birch	-70/-54	76	35
		Deep	Ulila	EE_DB2	Birch	-57/-55	95	45
		Deep	Dubrava	LT_DB	Birch	-156/-166	150	43
		Deep	Pļaviņas	LV_DB2	Birch	-94/-88	56	33
		Deep	Olaine	LV_DP3	Pine	-112/-118	28	101
		Deep	Laeva	EE_DS	Spruce	-66/-58	87	60
		Deep	Ropaži	LV_DS1	Spruce	-80/-82	50	40
		Deep	Smiltene	LV_DS5	Spruce	-53/-49	212	141
		Deep	Dubrava	LT_DA	Alder	-67/-55	120	30
		Shallow	Smiltene	LV_DP1	Pine	-32/-33	165	141
		Shallow	Smiltene	LV_DB1	Birch	-27/-13	90	24
		Shallow	Viesīte	LV_DS2	Spruce	-31/-28	86	55
		Shallow	Viesīte	LV_DS3	Spruce	-42/-36	95	55
		Shallow	Smiltene	LV_DS4	Spruce	-31/-28	68	162
	Undrained	Wet	Karevere	EE_DA	Alder	-29/-36	35	80
		Wet	Amalva	LT_UA	Alder	-2/-3	130	44
		Wet	Birzgale	LV_UA	Alder	-8/-1	100	74
		Wet	Amalva	LT_UB	Birch	-1/-2	140	44
		Wet	Smiltene	LV_UB1	Birch	-10/-4	230	61
		Wet	Smiltene	LV_UB2	Birch	-18/-7	134	81
		Wet	Smiltene	LV_US1	Spruce	-12/-5	205	88
		Wet	Smiltene	LV_US2	Spruce	-20/-12	221	96



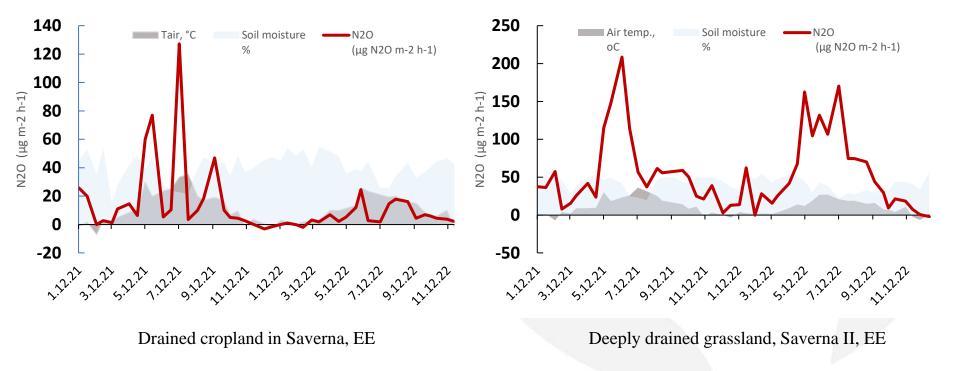
Results: Seasonal variation of soil temperature (TS), water table level (WTL) and CH_4 and N_2O fluxes in all Baltic states

Variation of annual a) CH_4 and b) N_2O fluxes and relationship with mean water level depth

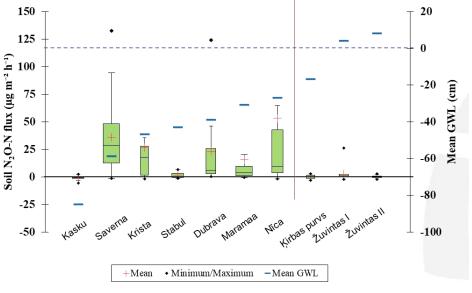

EFs for drained forests vs IPCC, 2014

Forests	Water regime	CH ₄ kg ha ⁻¹ yr ⁻¹ (95% CI)	N ₂ O kg N ha ⁻¹ yr ⁻ ¹ (95% CI)
IPCC 2013,	Drained	2.5 (-0.6, 5.7)	2.8 (-0.57, 6.1)
Temperate			
IPCC 2013,	Drained	2.0 (-1.6, 5.5)	3.2 (1.9, 4.5)
Boreal, N-rich			
Estonia	Drained	-5.2 (-6.2, -4.1)	1.4 (0.7, 2.1)
Latvia	Drained	-4.2 (-6.6, -1.9)	3.18 (0.25, 6.18)
Lithuania	Drained	-4.4 (-10.9, 2.0)	12.1 (1.59, 17)
Baltic states	Drained	-4.7 (-5.8, -3.5)	4.2 (1.27, 7.1)
	Undrained	58.7 (-9.5, 127)	0.76 (0.25, 1.34)

OrgBalt project EF are significantly lower in case of CH₄!



Description of the study sites - grasslands



Dynamics of soil N₂O fluxes

High annual variation -> more frequent site visits are needed!!!

Soil N₂O-N flux variability and mean GWL.

- ✓ Soil N₂O fluxes variation high: from -8.1 to 684.1 µg N m⁻² h⁻¹
- ✓ Mean soil N_2O flux:

drained sites was 22 μ g N m⁻² h⁻¹ undrained sites was 1.1 μ gN m⁻² h⁻¹

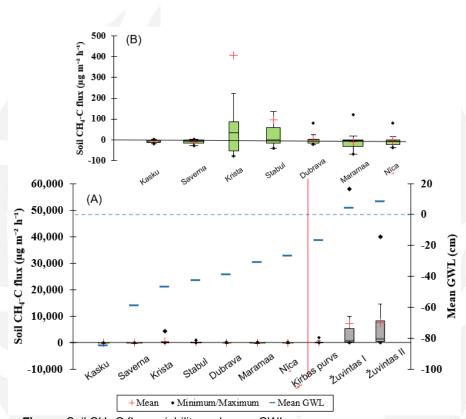
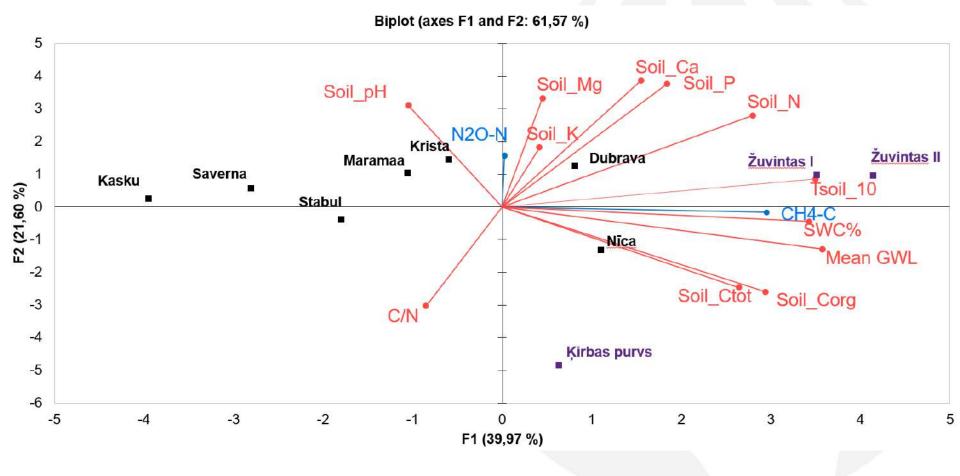


Figure: Soil CH₄-C flux variability and mean GWL.


- Soil CH₄ fluxes variation high: from -87.5 to 11 032.5 µg C m⁻²
- Mean soil CH₄ flux:

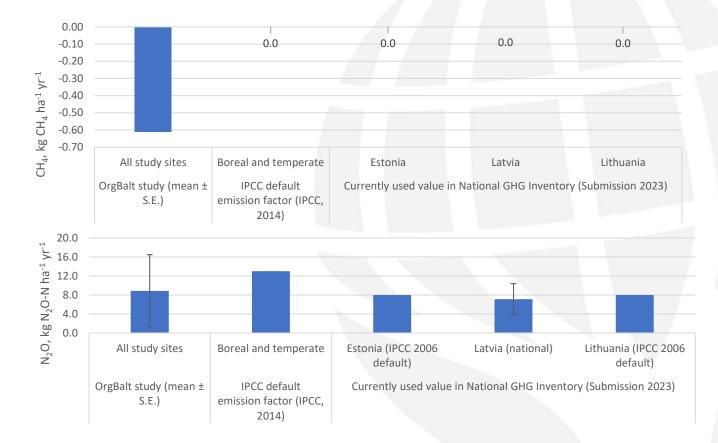
drained sites as 27.6 µg C m⁻² h⁻¹

undrained sites was 5030 $\mu gC~m^{-2}$

Org Balt

EU LIFE Programme project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

Principal component analysis (PCA) of soil physical (SWC%, Tsoil_10) and chemical parameters (pH, Mg, Ca, K, P, N, Ctot, Corg, C/N), and soil N₂O-N and CH₄-C fluxes on drained (black) and undrained (purple) sites.


EFs for drained grasslands vs IPCC, 2014

Grasslands		N ₂ O (kg N ha ⁻¹ vr ⁻¹)	CH ₄ (kg ha ⁻¹ vr ⁻¹)
IPCC 2013, Boreal	Drained	9.5 (4.6, 16)	1.4 (-1.6, 4.5)
IPCC 2013, Temperate, N-rich	Deeply drained	8.2 (4.9, 11)	16 (2.4, 29)
IPCC 2013, Temperate, N-rich	Shallow drained	1.6 (0.56, 2.7)	39 (-2.9, 81)
Estonia (n=2)	Drained	2.18	-1.4
Latvia (n=4)	Drained	1.64	3.92
Lithuania (n=1)	Drained	1.94	-0.63
Baltic regioon (EE, LV, LT)			
Baltic region (EE, LV, LT) (n=6)	Deeply drained	1.9 ± 2.2 (SE)	6.7 ± 19.4 (SE)
Baltic region (EE, LV, LT) (n=3)	Undrained	0.06 ± 0.01 (SE)	458 ± 377 (SE)

OrgBalt project EF: for CH_4 lower compared to boreal and temperate for N_2O lower compared to temperate and higher: boreal!

EFs for drained croplands vs IPCC, 2014

OrgBalt project EF for N₂O at the same range!

Conclusion

- Clear Land-use effect on GHG emissions => Forests vs Agriculture
- Climate zone variability, soil nutrient status and WTL affects annual CH_4 and N_2O emissions.
- Drainage reduce CH_4 while may increase N_2O emissions, mainly in afforested sites with previous agricultural use and vegetation (Alder trees).
- This study can be used for updating regional (Tier 1) or countryspecific (Tier 2) emission factors.
- Further studies required in site categories, that could reduce the variation for CH_4 and N_2O EFs for nutrient-rich organic soils.

Thank you!

LIFE OrgBalt, LIFE18 CCM/LV/001158

EU LIFE Programme project

"Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

